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Abstract

Previous studies [J.M. Maclnnes, F.V. Bracco, Stochastic particle dispersion modeling and the tracer particle limit, Physics of Fluids
A 4 (1992) 2809–2824; X.Q. Chen, Heavy particle dispersion in inhomogeneous, anisotropic, turbulence flows, International Journal
of Multiphase Flow 26 (2000) 635–661; T.L. Bocksell, E. Loth, Random walk models for particle diffusion in free-shear flows, AIAA
Journal 29 (2001) 1086–1096] have shown that the commonly applied stochastic separated flow (SSF) model predicts unphysical results
when dealing with the dispersion of tracer particles in inhomogeneous flows. This problem is explored, with regards to the discontinuous
random walk model, by considering an idealized flow with constant mean velocity with two regions of constant turbulent kinetic energy.
Using the probability density functions (PDFs) for the turbulent velocities it is shown that there is a higher probability of particles
traveling into the low kinetic energy region than there are traveling to the region of high kinetic energy, thus resulting in a net migration
of particles to the region of low kinetic energy. Corrections that apply a correction velocity and/or adjust the fluctuating velocity based
on the local value of the turbulent kinetic energy are analyzed and tested.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many engineering applications involve the motion of
particles in turbulent flows. For example, the behavior of
liquid fuel droplets plays an important role in determining
the combustion characteristics and efficiency of gas
turbines, diesel engines and spray combustion systems. In
addition, due to environmental concerns, the dispersion
of pollutants in the atmosphere from industrial plants
needs to be monitored. There is thus a need for mathemat-
ical models that predict particle motion in turbulent flows.

The stochastic separated flow (SSF) approach is a class
of models that is commonly applied to solve engineering
problems. This method tracks trajectories of individual
particles with the turbulence treated stochastically. Previ-
ous research has demonstrated, however, that these models
predict unphysical results for the case of very small tracer
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particles in the presence of inhomogeneous turbulence.
These models can produce an unphysical migration of
particles resulting from the inhomogeneity.

2. Background

The stochastic differential equation (SDE) model, that
manipulates the particle equation of motion into a stochas-
tic differential equation called the Langevin equation, is
typically applied to the dispersion of tracer particles in
the atmosphere. In 1981, Wilson et al. [4] found that his
Markovian chain model, derived from the Langevin equa-
tion, predicted an unphysical migration of tracer particles
in inhomogeneous turbulence. By comparing the flux den-
sities for homogeneous and inhomogeneous turbulence, it
was concluded that a bias needed to be added to the fluctu-
ating velocity to counteract the mean drift. Legg and
Raupach [5] later derived a very similar bias by arguing
that a force should be added to the Langevin equation
due to the mean pressure gradient that accompanied a gra-
dient in the fluctuating turbulent velocity. Thomson [6]
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Nomenclature

A cross-sectional area, m2

C particle concentration, (# particles/volume)
CD drag coefficient
Cl dimensionless constant with a value of 0.09
d diameter, m
f ratio of drag coefficient to Stokes drag

(1þ 0:15Re0:687
p )

f(Æ) probability density function
g acceleration due to gravity, m/s2

k kinetic energy, m2/s2

le eddy length scale, m
m mass, kg
n number of sub-time steps
N total number of particles injected into the flow
DNi number of particles in control volume i

P(Æ) probability
Rep particle Reynolds number (qf dpj~uf �~upj=l)
t time, s
te eddy lifetime, s
Dt time step, s
Dtsub sub-time step, s
u instantaneous velocity in the x-direction, m/s
U mean velocity in the x-direction, m/s
v instantaneous velocity in the y-direction, m/s

V mean velocity in the y-direction, m/s
v0c correction velocity in the y-direction, m/s
v0c;sub correction velocity in the y-direction applied at

every sub-time step, m/s
x, y Cartesian coordinates, m
Dyi y-dimension of control volume i, m

Greek symbols

C random variable
e dissipation rate, m2/s3

l molecular dynamic viscosity, kg/m/s
m kinematic viscosity, m2/s
q density, kg/m3

r2 variance of fluctuating velocity ((2/3)k)
sp particle relaxation time, s

Subscripts

(Æ)f property of the fluid
(Æ)p property of the particle

Superscripts

(Æ) 0 fluctuating component
ð�Þ time averaged component
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took a different approach. He found that it was the way in
which the fluctuating component of the turbulence velocity
was being randomized that caused the problem. His correc-
tion involved modifying the random component of the
velocity by using non-Gaussian forcing terms. This method
was later extended by Iliopoloulos and Hanratty [7] and
Mito and Hanratty [8].

Sawford [9] and Thomson [10] introduced a well mixed
condition that stochastic models should abide by in order
to obey the second law of thermodynamics. The well-mixed
condition basically states that an initially uniform distribu-
tion of tracer particles be maintained. Pope [11] found that
in order to satisfy this condition the calculated mean velo-
city field needs to satisfy the continuity equation thereby
requiring the proper incorporation of the mean pressure
gradient into the dispersion model.

In 1992, MacInnes and Bracco [1] found that random
walk models (both continuous and discontinuous) also
predict an unphysical migration of tracer particles in inho-
mogeneous turbulence. Random walk models decompose
the instantaneous turbulent velocity that is required for
the particle equation of motion into two components: a
mean velocity that is found from a turbulence model and a
fluctuating velocity, which is modeled as a discontinuous
or continuous random function. For the discontinuous ran-
dom walk model, MacInnes and Bracco proposed normaliz-
ing the fluctuating velocity by multiplying it by the local (or
updated) turbulence intensity via the kinetic energy at sub-
time steps as well as adding a bias to the mean turbulence
velocity. The bias found from MacInnes and Bracco took
the same form as the Wilson et al. [4] correction, derived
for the SDE model, except for an empirical constant. Chen
[2] proposed continuously normalizing the fluctuating velo-
city with the local turbulence intensity found from a second-
moment closure model. Bocksell and Loth [3] derived a bias
that was very similar to that of MacInnes and Bracco but
they applied it to the sub-time step level. Details of the
derivation of the bias velocities for the discontinuous
random walk models will be provided in a later section.

The current research analyzes the effectiveness of nor-
malizing the fluctuating velocity with the local (or updated)
turbulence intensity and shows that updating the kinetic
energy to the local value is not sufficient to remove the false
migration. Further, it is shown that that method can be
equivalent to applying a velocity correction to the particle
trajectory calculation. Finally, the existing velocity correc-
tions [1,3] as well as a new one that was developed by the
authors are compared.

3. Particle dispersion model

SSF models use a Lagrangian framework to solve for
the trajectory of each particle. The Lagrangian particle
equation of motion proposed by Basset [12], Boussinesq
[13] and Oseen [14] and later extended by Tchen [15] is
most often used. For real particles that have a much
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greater density than the fluid, the particle equation of
motion reduces to

d~up

dt
¼ f

sp

ð~uf �~upÞ þ~g; ð1Þ

where sp is the particle time constant for Stokes flow,

sp ¼
qpd2

p

18l
; ð2Þ

f is the ratio of the drag coefficient to Stokes drag,

f ¼ 1þ 0:15Re0:687
p ; ð3Þ

and Rep is the particle Reynolds number,

Rep ¼
qfdpj~uf �~upj

l
. ð4Þ

The discontinuous random walk model (otherwise
known as the discrete eddy model) assumes the particles
interact with a series of discrete turbulent eddies. Every
time a particle enters a new eddy, it is exposed to a new
instantaneous velocity, which is held constant for the dura-
tion of the particle/eddy interaction time. The instanta-
neous turbulent velocity field can be decomposed into a
mean velocity and a random fluctuating velocity. The iso-
tropic Shuen, Chen and Faeth [16] model determines the
fluctuating velocity by

~u0fðtÞ ¼ ~C
ffiffiffiffi
2
3
k

q
; ð5Þ

where C is a random variable sampled using a Gaussian
distribution of zero mean and unity variance.

The duration that a particle remains exposed to each
eddy or instantaneous velocity is determined from the eddy
interaction time. The eddy interaction time is calculated to
be the minimum of the eddy lifetime and the time for a par-
ticle to cross an eddy. Lighter particles have a tendency to
follow the fluid particle and will remain within the eddy for
the duration of the eddy’s lifetime. The Shuen, Chen and
Faeth [16] model expresses the eddy lifetime as

te ¼
le

ð2
3
kÞ1=2

; ð6Þ

where le is the dissipation length scale which is defined as

le ¼ C0:75
l

k3=2

e
. ð7Þ

Cl is a turbulence model constant with a value of 0.09. Tra-
cer particles represent the limit where the particles time
constant, sp, is small relative to the smallest turbulence
scales.

4. Unphysical predictions for tracer particles

Discontinuous random walk models predict unphysical
results when dealing with the dispersion of tracer particles
in inhomogeneous flows. This statement can be easily pro-
ven by reducing the dispersion problem to a case where the
fluid motion is divergence free and the particles follow the
same path as the fluid particles, i.e., tracer particles. When
a uniform concentration of particles is injected along the
entire inlet region of a system, the same uniform concentra-
tion should remain throughout the system, regardless of
the inhomogeneity of the turbulence (in the same way that
an isothermal flow would remain isothermal irrespective of
the turbulence). It can be shown, however, that the models
predict an unphysical migration of particles from the
region of high turbulence intensity to the region of low tur-
bulence intensity.

To demonstrate that the Shuen, Chen and Faeth [16]
model predicts unphysical particle migrations in inhomo-
geneous turbulence, two idealized inhomogeneous cases
are simulated. All cases use a uniform mean flow with
particles released uniformly from the inlet.

4.1. Case 1 – Kinetic energy step function

The first test case involves a kinetic energy step function.
The ratio of the kinetic energy to the dissipation rate is
kept constant throughout the domain. This will ensure a
uniform eddy lifetime and therefore a uniform time step
(for the case of tracer particles). A summary of the flow
properties are as follows:

U ¼ 5 m/s, V ¼ 0 m/s,
k
e
¼ 1:491 s,

k ¼ 0:1 m2=s2 ! y < 0 m

0:5 m2=s2 ! y > 0 m

� �
.

A uniform grid is used as shown in Fig. 1. A total of 12
million tracer particles are injected uniformly along the
entire inlet region (which was found to be statistically sig-
nificant). By defining U �

ffiffiffiffiffiffi
u02

p
the x-dimension (axial

direction) of the control volumes can be chosen to be the
distance a particle travels during a time step. Thus, parti-
cles travel a full control volume during each time step,
which eliminates dispersion in the axial direction. Since tra-
cer particles that follow the fluid flow exactly are consid-
ered, the particle velocity is set to the sampled gas phase
velocity.

Normalized particle concentration profiles are calcu-
lated for several downstream locations. The particle con-
centration profiles are normalized by the particle
concentration at the inlet. If there were no net particle
migration, the normalized particle concentration profiles
would be uniform and equal to unity at all downstream
locations. Fig. 2 shows the predicted particle concentration
after 1, 5, and 9 eddy lifetimes. From the figure, it is clear
that the Shuen, Chen and Faeth [16] model predicts a clear
migration of particles from the region of high turbulent
intensity to low turbulent intensity. This particle migration
is amplified downstream from the inlet.

The particle migration occurs because a greater number
of particles are moving towards regions of low turbulence
intensity than there are moving to regions of high turbu-
lence intensity. This is because particles from regions of
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Fig. 1. Grid domain used in test cases.
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Fig. 2. Normalized particle concentration profiles for first test case at different locations downstream from the inlet.
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high turbulence intensity on average can travel a greater
distance than particles from a lower turbulence intensity
region during the same time interval [1]. Thus the high
velocity particles from the high kinetic energy region are
able to penetrate into the low kinetic energy region, yield-
ing a non-uniform particle concentration. This can be illus-
trated mathematically since the probability density
functions (PDFs) for the turbulent velocities can be used
to determine the probability of particles to travel into each
turbulent kinetic energy region. As in the Shuen, Chen and
Faeth [16] model, the PDFs used to sample the fluctuating
velocities are Gaussian with a mean of zero and a variance
of 2

3
k. As a result, there is a higher probability of particles

traveling into the low kinetic energy region than there are
traveling to the region of high kinetic energy, thus resulting
in a net migration of particles to the region of low kinetic
energy.

An analytical expression for the net flow of particles
across the kinetic energy step function can be derived using
the PDFs used to sample the fluctuating velocities. The first
time step is only considered. Therefore, the concentration
or number of particles (N) will be initially uniform. The
net flow equation will take the form

Net Flow ¼ Flow Upðfrom high k regionÞ
� Flow Downðfrom low k regionÞ

¼ Probability(Flow Up) � N

� Probability(Flow Down) � N . ð8Þ
The probability of upward particle flow can be expressed as

Probability(Flow Up)

¼ P high v0 >
y1

Dt

� �
þ P high v0 >

y2

Dt

� �
þ P high v0 >

y3

Dt

� �
þ � � � þ P high v0 >

yn

Dt

� �
¼
X1
i¼1

P high v0 >
yi

Dt

� �
; ð9Þ
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where yi is the distance of the ith control volume away from
the kinetic energy step function. A similar expression can
be derived for the downward flow of particles.

Probability(Flow Down) ¼
X1
i¼1

P low v0 <
�yi

Dt

� �
. ð10Þ

The following is true because the PDF for v 0 is symmetric
about zero:

X1
i¼1

P low v0 <
�yi

Dt

� �
¼
X1
i¼1

P low v0 >
yi

Dt

� �
ð11Þ

Using the above information, a revised expression for the
net flow can be found:

Net Flow ¼ N
X1
i¼1

P high v0 >
yi

Dt

� �
� P low v0 >

yi

Dt

� �� �" #
.

ð12Þ

The probability functions can be substituted into the
expression for the net flow

Net Flow ¼ N
X1
i¼1

Z 1

yi=Dt
fhighðv0Þdv0 �

Z 1

yi=Dt
flowðv0Þdv0

 !" #
;

ð13Þ

where fiðv0Þ ¼ 2ffiffiffiffi
2p
p

r
e�

1
2

v0
rið Þ

2

and ri ¼
ffiffiffiffiffiffi
2
3
ki

q
for the Shuen,

Chen and Faeth [16] model.
Solving the integrals gives

Net Flow ¼ N
2

X1
i¼1

erf
yiffiffiffi

2
p

Dtrlow

� �
� yiffiffiffi

2
p

Dtrhigh

 ! !" #
.

ð14Þ
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Fig. 3. Kinetic energy profile
The summation can be transformed into an integral by
defining N ¼

P1
i¼1CADyi:

Net Flow¼ CA
2

Z 1

0

erf
yiffiffiffi

2
p

Dtrlow

� �
� yiffiffiffi

2
p

Dtrhigh

 ! !
dy

" #
.

ð15Þ

Integrating and simplifying the above equation gives

Net Flow ¼ CAffiffiffi
2
p rhighDtffiffiffi

p
p � rlowDtffiffiffi

p
p

	 

. ð16Þ

This is the analytical prediction of the migration of parti-
cles after the first time step for the case of a uniform flow
with two regions of uniform kinetic energy (step function).
Eq. (16) indicates that as expected, the net flow increases
with increasing inhomogeneity and increasing time step.
4.2. Case 2 – Gradual change in kinetic energy

The second test case has the same grid domain and par-
ticle injection scheme as the previous test case. The turbu-
lence properties differ in terms of the kinetic energy profile
such that a more gradual change in kinetic energy occurs:

k ¼

0:1 m2=s2 for y < 2:5 m,

0:45þ 0:35 � sin p
2

� �
ðy � 3:5Þ

� �
m2=s2

for 2:5 m 6 y 6 4:5 m,

0:8 m2=s2 for y > 4:5 m:

8>>><
>>>:

The kinetic energy profile is shown in Fig. 3. This case is
designed to ensure a continuous kinetic energy gradient
profile. Once again, the ratio of the kinetic energy to dissi-
pation rate is kept constant to ensure a constant eddy life-
time and therefore a uniform time step.
4 5 6 7
 (m)

for the second test case.
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Fig. 4. Normalized particle concentration profiles for the second test case at different locations downstream from the inlet.
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Fig. 4 is a plot of the normalized particle concentration
profiles predicted by the Shuen, Chen and Faeth [16] model
at several downstream locations. The model predicted a
clear migration of particles from the region of high turbu-
lent intensity to low turbulent intensity. In this case, the
amplitude of the concentration profile reduced relative to
case 1 since a continuous kinetic energy profile is applied
as compared to the step function used in case 1. Once
again, the particle migration is amplified downstream from
the inlet.

5. Methods to correct for false particle migration

The false migration of fluid particles arises in the discon-
tinuous random walk model because the turbulent fluctua-
tion, determined at the start of the eddy lifetime, is held
constant for the duration of the eddy lifetime. Researchers
[1–3] have attempted to resolve this issue by adding a cor-
rection velocity and/or updating the turbulence intensity
during the particle/eddy interaction.

5.1. MacInnes and Bracco

MacInnes and Bracco [1] combined updating the kinetic
energy with a correction velocity. At each sub-time step,
the following instantaneous fluctuating velocity is applied:

~u0new ¼~u0old

ffiffiffiffiffiffiffiffiffiffiffi
2
3
knew

q
ffiffiffiffiffiffiffiffiffiffi
2
3
kold

q ¼ ~C
ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
knew

r
. ð17Þ

Note that the random variable C is held constant over the
particle/eddy interaction time (as required by the discontin-
uous random walk model). The correction velocity was de-
rived by estimating the mean fluctuating velocity from the
characteristic distances particles travel during an eddy life-
time. Assuming a linearized variation in r, isotropy and
d2r=dx2

dr=dx

 rsL < 1, the transverse correction velocity can be

written as

v0c ¼
1

3

ok
oy

te. ð18Þ

A similar correction can be applied to the streamwise and
spanwise directions. The correction velocity is applied at
the beginning of every particle/eddy interaction.

5.2. Chen

Chen [2] updated the turbulent intensity at time intervals
that were much smaller than the eddy lifetime (or sub-time
steps). Using an anisotropic discontinuous random walk
model, Chen used the normal stress found from a second
moment closure model to approximate the turbulence
intensity. For this analysis isotropy will be assumed and

the turbulence intensity will be approximated as
ffiffiffiffiffi
2
3
k

q
. As

a result, this method reduces to updating the kinetic energy
at every sub-time step.

5.3. Bocksell and Loth

Another correction velocity that is applied in conjunc-
tion with updating the kinetic energy is that of Bocksell
and Loth [3]. Bocksell and Loth’s correction velocity
accounted for the particle acceleration due to the gradient
in r2. This was done by analyzing the Lagrangian deriva-
tive of the fluid velocity along the fluid path. For isotropic,
thin free-shear flows, the transverse correction velocity
takes the form

v0cðt þ DtÞ ¼ v0cðtÞ þ
1

3

ok
oy

Dt; ð19Þ
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and is applied multiple times during a particle/eddy inter-
action. The above velocity corrections can also be applied
in the streamwise and spanwise directions.

5.4. Strutt and Lightstone

Probability and statistics can also be used to derive a
correction velocity. Consider an eddy of size l. For the case
of inhomogeneous turbulence, there will be a gradient of
the root mean square (rms) of the fluctuating velocity
within the eddy. Using probability theory, an expected or
mean value for the fluctuating velocity can be determined
for both the upper and lower half of the eddy. For the
Shuen, Chen and Faeth [16] model, the PDF for the fluctu-
ating velocity is assumed to be Gaussian:

f ðv0Þ ¼ 1ffiffiffiffiffiffi
2p
p

r
e�

1
2

v0
rð Þ

2

; ð20Þ

where the mean is zero and the standard deviation, r, isffiffiffiffiffi
2
3
k

q
. The PDF for the negative fluctuating velocities only

can be expressed as

f ðv0 : v0 < 0Þ ¼ 2ffiffiffiffiffiffi
2p
p

r
e�

1
2

v0
rð Þ

2

. ð21Þ

The mean or expected value of the negative fluctuating
velocities can then be determined as

Eðv0Þ ¼
Z 0

�/
v0f ðv0 : v0 < 0Þdv0 ¼ �r

ffiffiffi
2

p

r
; ð22Þ

and is the expected velocity of downward moving particles.
Thus, the mean or expected value for the random fluctuat-
ing velocity for particles starting at the top of the eddy and
moving down is

v0top ¼ �
ffiffiffi
2

p

r
rjyþ1

2l. ð23Þ

After substituting in the standard deviation of the fluctuat-
ing velocity PDF, the expression for the average fluctuating
velocity for the top half of the eddy becomes

v0top ¼ �
ffiffiffiffiffiffi
4

3p

r ffiffiffiffiffiffiffiffiffiffiffi
kjyþ1

2l

q
. ð24Þ

A similar procedure can be used to derive an expression for
the mean random fluctuating velocity for particles starting
at the bottom of the eddy and moving up to give:

v0bottom ¼
ffiffiffiffiffiffi
4

3p

r ffiffiffiffiffiffiffiffiffiffiffi
kjy�1

2l

q
. ð25Þ

The net flow of particles across the midsection of the
eddy should be zero:

v0top þ v0bottom ¼ 0. ð26Þ

Therefore, a correction to the velocities needs to be added
such that the mean net flow at y will be zero:

v0top þ v0bottom þ v0c ¼ 0; ð27Þ
v0c ¼ �ðv0top þ v0bottomÞ. ð28Þ
Substituting in the expression for the fluctuating velocity at
the top and bottom of the eddy, the correction velocity
takes the form

v0c ¼
ffiffiffiffiffiffi
4

3p

r ffiffiffiffiffiffiffiffiffiffiffi
kjyþ1

2l

q
�

ffiffiffiffiffiffiffiffiffiffiffi
kjy�1

2l

q� �
. ð29Þ

If it is assumed that over the length of an eddy
ffiffiffi
k
p

varies
linearly with position, the correction velocity becomes

v0c ¼
ffiffiffiffiffiffi
1

3p

r
1ffiffiffi
k
p dk

dy
l. ð30Þ

In order to apply this correction factor to the test cases,
the value of l that corresponds to a given time step needs to
be found. By using the expected value for the fluctuating
velocities, the length scale can be approximated by

l ¼ v0avgDt ¼
ffiffiffi
2

p

r
rDt. ð31Þ

Using this form of the length scale gives

v0c ¼ 0:212
dk
dy

Dt. ð32Þ

The accuracy of this correction velocity should increase
as the length or time step decreases. Strutt and Lightstone
[17] found the general form of the correction can be written
as

v0ci
¼ 0:212

dk
dy


yi

Dtsub þ v0ci�1
. ð33Þ

This correction velocity will be implemented in much the
same way as the correction velocity proposed by Bocksell
and Loth [3]. Due to the inherent assumption of isotropy
in the Shuen, Chen and Faeth [16] model, the correction
velocity for all three directions takes the same form.
6. Analysis of the different correction methods

There are two different correction methods that are typ-
ically applied to the discontinuous random walk model:
updating the kinetic energy and/or adding a correction
velocity to the mean velocity. The updating the kinetic
energy method is analyzed and is found to have limited
effectiveness. The performance of the correction velocities
are then compared using the second test case that involves
a gradual change in the kinetic energy.

6.1. Updating kinetic energy method adapted from Chen [2]

An intuitive solution is to apply the local value of the
turbulent kinetic energy at sub-time steps of the eddy life-
time. As the sub-time step is reduced, it is expected that
the false migration will no longer occur. This proposed cor-
rection for the false particle migration is tested for the sec-
ond idealized inhomogeneous turbulence test case. Fig. 5
compares the normalized particle concentration profile
obtained with no correction and with updating the kinetic
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energy using multiple numbers of sub-steps for the second
test case. The results show that although the particle migra-
tion is reduced, the updating kinetic energy method
appears to reach an effective limit quickly as the time step
is reduced and also fails to remove the false migration of
particles.

Updating the kinetic energy at every sub-time step can
be shown to be equivalent to applying a correction velocity
to the initial turbulent fluctuation. By putting the updating
kinetic energy method in this context, it helps explain the
limited effectiveness of this method as well as allows for a
direct comparison with other proposed correction
velocities.

6.1.1. Effective correction velocity over sub-time step

The updating kinetic energy method takes the form

v0new ¼ v0old

rnew

rold

� �
. ð34Þ

The ‘new’ standard deviation can be approximated by a
first order Taylor series as

rnew ¼ rold þ
dr
dy

� �
old

Dy ð35Þ

or

rnew ¼ rold þ
dr
dy

� �
old

v0oldDt. ð36Þ

Substituting in the expression for the standard deviation,

ri ¼
ffiffiffiffiffiffi
2
3
ki

q
, gives

v0new ¼ v0old þ
1

2

1

k

� �
dk
dy

� �
v0old

� �2
Dt. ð37Þ

The second term on the right hand side is essentially the
correction velocity due to the updating kinetic energy
method. Taking the average of the correction velocity (not-

ing that ðv0oldÞ
2 ¼ 2

3
k) gives:

v0c;sub ¼
1

3

dk
dy

� �
Dt; ð38Þ

where v0c;sub is the effective correction velocity equivalent to
updating the kinetic energy at every sub-time step. Note
that this correction velocity is applied at each sub-time
step.

To test the validity of Eq. (38), simulations were per-
formed using this correction velocity for test case two.
Fig. 5 compares the results from the Shuen, Chen and
Faeth model with the effective correction velocity (Eq.
(38)) and with updating the kinetic energy. The two curves
are very similar. This provides confidence in the analysis
that indicates that the updating kinetic energy method is
equivalent to adding a correction velocity.

The Bocksell and Loth [3] correction velocity is identical
to that of the effective correction velocity (Eq. (38)) which
was shown herein to be equivalent to updating the kinetic
energy at every sub-time step. However, because the cor-
rection velocity of Bocksell and Loth is applied in conjunc-
tion with updating the kinetic energy, their correction is
effectively twice that obtained by simply updating the
kinetic energy.

6.1.2. Effective correction velocity over eddy lifetime

It is of interest to derive an average velocity correction
applied over the eddy lifetime. This is done by firstly con-
sidering a case with a finite number of time steps (five in
this example). The example is then extended to an arbitrary
number (N). Initially the fluctuating velocity is v 0. There-
fore the first time step will use a fluctuating velocity of

v01 ¼ v0. ð39Þ
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For the second sub-time step, the fluctuating velocity will
take the form

v02 ¼ v01 þ v0c1 ð40Þ

where v0c1 is the velocity correction equivalent to updating
the kinetic energy. The third, fourth and fifth sub-time
steps follow suit.

The distance a particle travels over an eddy lifetime can
be written as follows:

Dytot ¼
X5

i¼1

Dyi ¼
X5

i¼1

v0iDt; ð41Þ

where

Dt ¼ te

nþ 1
; ð42Þ

and n is the number of corrected sub-steps (in this case
n = 4). Recall that the first sub-step is not corrected.
Substituting the fluctuating velocities into Eq. (41) and sim-
plifying gives

Dytot ¼ 5v0Dt þ ð4v0c1 þ 3v0c2 þ 2v0c3 þ v0c4ÞDt. ð43Þ

The first term on the right hand side is the distance a par-
ticle travels without a correction during the eddy lifetime,
Dyjnocorr = v 0te. The second term on the right-hand side
must then be the distance traveled by a particle due to
the correction over an eddy lifetime and it can be trans-
formed into a series, where the number of sub-time steps
(n + 1) is now generalized:

Dyjcorr ¼
Xn

i¼1

ðnþ 1� iÞv0ciDt. ð44Þ
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Fig. 6. Comparison of correction factors
The distance traveled during a full time step due to the
updating kinetic energy method can be expressed in terms
of an average correction velocity as follows:

Dyjcorr ¼ v0cte. ð45Þ

Combining the two expressions for Dyjcorr gives

v0c ¼
Pn

i¼1ðnþ 1� iÞv0ciDt
te

. ð46Þ

After substituting the effective correction velocity over the
sub-time step (Eq. (38)) into the above equation and
assuming constant dk

dy the relationship becomes

v0c ¼
1

3te

dk
dy

� � Xn

i¼1

ðnþ 1ÞDt2 �
Xn

i¼1

iDt2

" #
. ð47Þ

Using Eq. (42) and

Xn

i¼1

i ¼ nðnþ 1Þ
2

; ð48Þ

the average correction velocity takes the form

v0c ¼
1

6

dk
dy
fte � Dtg. ð49Þ

As Dt! 0, the average corrected velocity (over the eddy
lifetime) is

v0c ¼
1

6

dk
dy

te. ð50Þ

The limit given by Eq. (49) can be reached relatively
quickly. For example, for a constant kinetic energy gradi-
ent case, the difference in the average correction between
50 sub-steps and 100 sub-steps is 1%.
4 5 6 7
 (m)

Strutt & Lightstone
Bocksell & Loth

for the second test case at x = (5te)U.
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The results show that updating the kinetic energy has a
limited effectiveness. This indicates the need for an addi-
tional correction. This would explain why researchers such
as MacInnes and Bracco [1] and Bocksell and Loth [3] have
proposed corrections that involved both updating the
kinetic energy and applying a correction velocity.

6.2. ‘Correction’ velocities

Fig. 6 compares the normalized particle concentration
curves that were obtained when the MacInnes and Bracco
[1], Bocksell and Loth [3] and the Strutt and Lightstone
[17] correction factors were applied to the second test case
after 5 eddy lifetimes. All three correction factors take simi-
lar forms, however, they differ in the empirical constant used
and the frequency at which they are applied. The MacInnes
and Bracco correction over corrects for the particle migra-
tion while the Strutt and Lightstone correction under
corrects. The Bocksell and Loth correction performs the best
out of all the corrections producing a fairly uniform norma-
lized particle concentration curve of approximately one.

7. Conclusion

SSF models predict unphysical results for tracer parti-
cles in inhomogeneous turbulence due to the way in which
the fluctuating velocities are modeled. Because the PDF’s,
used to sample the fluctuating velocity, have a standard
deviation that is related to the kinetic energy, there is a
higher probability of particles traveling to regions of low
turbulence intensity than traveling to regions of high turbu-
lence intensity. The problem is amplified by the fact that
the fluctuating velocity is held constant for the duration
of the particle/eddy interaction.

A correction that involves updating the kinetic energy
(and thus the fluctuating component of the velocity) multi-
ple times during an eddy lifetime was tested. It was hypo-
thesized that as the number of sub-steps increases, the
particle migration would reduce and there would be no
need for a corrective velocity. Indeed, previous researchers
have used this approach to account for inhomogeneity.

The updating kinetic energy method consistently failed
to completely correct for the particle migration. In order
to explain the apparent limit of the updating kinetic energy
methods corrective ability, an estimate for the average cor-
rection over an eddy lifetime that is equivalent to the
updating kinetic energy method was found. This average
correction converges quickly as the timestep is reduced,
and it was found that further correction was required.
For the test cases considered herein, the correction of
Bocksell and Loth [3] was the most effective in reducing
the false migration of particles.
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[13] J. Boussinesq, Théorie analytique de la chaleur, vol. 2, Gauthier-
Villars, Paris, 1903.

[14] C.W. Oseen, Hydrodynamik, Leipzig, 1927.
[15] C.M. Tchen, Mean value and correlation problems connected with

the motion of small particles suspended in a turbulent fluid, Ph.D.
Thesis, Delft University, The Netherlands, 1947.

[16] J.S. Shuen, L.-D. Chen, G.M. Faeth, Evaluation of a stochastic
model of particle dispersion in a turbulent round jet, AIChE Journal
29 (1983) 167–170.

[17] H.C. Strutt, Analysis of tracer particle migration in inhomogeneous
turbulence, M.A.Sc. Thesis, McMaster University, Hamilton, Ont.,
Canada, 2004.


	Analysis of tracer particle migration in inhomogeneous turbulence
	Introduction
	Background
	Particle dispersion model
	Unphysical predictions for tracer particles
	Case 1 - Kinetic energy step function
	Case 2 - Gradual change in kinetic energy

	Methods to correct for false particle migration
	MacInnes and Bracco
	Chen
	Bocksell and Loth
	Strutt and Lightstone

	Analysis of the different correction methods
	Updating kinetic energy method adapted from Chen [2]
	Effective correction velocity over sub-time step
	Effective correction velocity over eddy lifetime

	 lsquo Correction rsquo  velocities

	Conclusion
	Acknowledgements
	References


